33=(x^2)-(3x)*(2x)*(-6)

Simple and best practice solution for 33=(x^2)-(3x)*(2x)*(-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 33=(x^2)-(3x)*(2x)*(-6) equation:



33=(x^2)-(3x)(2x)(-6)
We move all terms to the left:
33-((x^2)-(3x)(2x)(-6))=0
We calculate terms in parentheses: -(x^2-3x2x(-6)), so:
x^2-3x2x(-6)
We multiply parentheses
x^2+18x^2
We add all the numbers together, and all the variables
19x^2
Back to the equation:
-(19x^2)
a = -19; b = 0; c = +33;
Δ = b2-4ac
Δ = 02-4·(-19)·33
Δ = 2508
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2508}=\sqrt{4*627}=\sqrt{4}*\sqrt{627}=2\sqrt{627}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{627}}{2*-19}=\frac{0-2\sqrt{627}}{-38} =-\frac{2\sqrt{627}}{-38} =-\frac{\sqrt{627}}{-19} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{627}}{2*-19}=\frac{0+2\sqrt{627}}{-38} =\frac{2\sqrt{627}}{-38} =\frac{\sqrt{627}}{-19} $

See similar equations:

| -1.3x+2.6=2.2x-9.9+1.7 | | 7g=819 | | (1)/(5)2^(3x+4)=100 | | 225=15k | | 2y=370 | | 261=29m | | 2c–12c+13c=12 | | 540=20s | | 12x-6=-(18x-11) | | n18=9 | | 7=9.5x | | 12=4.3-5(1.2x-7) | | 14+4x=29 | | -3x4+48x2=0 | | 3+4(x−2)=7 | | 30/5*3+10-18=x | | x-(.37x)=100 | | 3÷4x+5÷8=4x | | Y=10x-0 | | 6v+9=18v-3v+18 | | 5(x+-1)+3=13 | | 50-8x=15-3x | | 3^(6x+1)=1 | | 6x-3+4x=7x+9 | | 5x^+81x+9=0 | | 8x-24=7x-3x | | 64x^-5x-3=0 | | 1/x-x=2 | | 8x^-8x+12=2x+6 | | 38-2a=14+a | | 64=32t-t^2 | | 122x-20=15x-38 |

Equations solver categories